

Report WP3: A3

Core textbook content preparation:
Preparation of core textbook content

Result

Preparation of core textbook content

Related to

WP3-A3: Preparation of core textbook content

Statement of originality

This deliverable contains original unpublished work, except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation, or both.

Disclaimer

This report contains material which is the copyright of TET Consortium Parties. All TET Consortium Parties have agreed that the content of the report is licensed under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International License. TET Consortium Parties does not warrant that the information contained in the Deliverable is capable of use, or that use of the information is free from risk and accept no liability for loss or damage suffered by any person or any entity using the information.

Copyright notice

© 2022-2025 TET Consortium Parties

Note

For anyone interested in having more information about the project, please see the website at: https://tet-erasmus.eu/

This publication is licensed under a <u>Creative Commons Attribution-NonCommercial 4.0</u>

International Public License (CC BY-NC 4.0).

Table of contents

1. Int	troductiontroduction	
	P3-A3: Preparation of core textbook content	
	Results	
Append	dix	6
2.2.	UNILJ	7
2.3.	KTH	20
2.4.	UNIPI	38
2.5.	PR7	52

1. Introduction

WP3 is divided into 4 main Activities (A1-A4). This report comprises the information associated with the work done for the third activity A3, namely "WP3-A3: Preparation of core textbook content". The University of Pisa (UNIPI) is the leading organization and coordinator for this work package.

The results of this activity are the templates defined during A2 filled with the material from each member of the consortium.

The following Table 1 summarizes the main acronyms in alphabetic order, full name and short description.

Table 1: Acronyms, full name, and short descriptions

Acronym	Full name	Short description
ATs	Assessment Tasks	In the Constructive Alignment framework, assessment tasks are not isolated evaluations but are purposefully linked to the specified Intended Learning Outcomes (ILOs). They serve as a means to verify whether students have successfully achieved the learning objectives set forth in the curriculum.
CA	Constructive Alignment	Constructive Alignment (CA) is a pedagogical theory and framework developed by John Biggs that emphasizes the importance of alignment in the design and delivery of educational experiences. The key components of constructive alignment include Intended Learning Outcomes (ILOs), Teaching and Learning Activities (TLA), and Assessment Tasks (ATs). The theory posits that for effective learning to occur, these three components must be closely aligned to ensure coherence and transparency in the educational process.
CONALI	Constructive Alignment Ontology	The CONstructiveALIgment (CONALI) ontology, is a recent application of ontologies in education, specifically in the context of Constructive Alignment (CA). Developed using the Ontology Web Language (OWL), CONALI provides a framework to represent the body of knowledge related to CA, encompassing semantic relationships in a computer-readable format. The last version is CONALI 2.0.

EdU	Educational Units	Low level granularity distinct modules or components within an educational program or curriculum. These units are designed to cover specific topics, themes, or skills, and they serve as the building blocks of the overall educational experience.
EGV	Educational Goal Verb	An Educational Goal Verb refers to a verb that articulates the specific actions or behaviors that students are expected to demonstrate as part of achieving educational goals. By incorporating precise verbs into ILOs, educators can better communicate the intended depth and complexity of learning, facilitating the alignment between ILOs, Teaching and Learning Activities (TLA), and Assessment Tasks (ATs) as per the principles of constructive alignment.
НЕ	Higher Education	Education that takes place at universities, colleges, and other institutions that award academic degrees. It typically follows the completion of secondary education (high school) and offers more advanced and specialized instruction. Higher education includes undergraduate and postgraduate programs, leading to degrees such as associate's, bachelor's, master's, and doctoral degrees.
ILOs	Intended Learning Outcomes	These are clear, specific, and measurable statements that articulate what students are expected to know, understand, and be able to do by the end of a course or educational program. ILOs serve as the starting point for instructional design and guide the selection of teaching strategies and assessment methods. These are made by EGV, context and content.
OWL	Ontology Web Language	Web Ontology Language is a powerful and expressive language used for representing and sharing ontologies on the World Wide Web. An ontology is a formal representation of knowledge, typically describing the relationships between entities within a specific domain. OWL is particularly designed to support the development of ontologies that enable machines to reason about information and enhance interoperability between applications.
SOLO	Structure of Observed Learning Outcome	The Structure of Observed Learning Outcome (SOLO) taxonomy is an educational framework designed to assess the levels of understanding and learning outcomes in students. SOLO taxonomy categorizes learning outcomes into different levels of complexity, providing a way to

TET: The Evolving Textbook

measure the depth of understanding a student has reached.

TLA	Teaching and Learning Activities	Methods, strategies, and activities employed by educators to facilitate student learning. In constructive alignment, TLAs are carefully chosen and designed to directly support the achievement of the intended learning outcomes, according to the selected EGV. The aim is to create engaging and relevant learning experiences that guide students toward the desired understanding and skills.
TET	The Evolving Textbook	Current project: development of a platform for engineering EdU representation, focusing on CA. The platform of TET requires to be built on educational ontology presenting scalability, and with alignment in content to allow collaborative update of the material.

2. WP3-A3: Preparation of core textbook content

2.1. Results

During this activity the partner involved in the project collected EdU information following the template developed in accordance to the CONALI 3.0 (WP3-A2). Such templates were developed and filled by each institution (i.e. UNIPI, UNILJ, PRZ, KTH). Four EdUs were initially planned: 1. Mechatronics (UNILJ), 2. Assembly (KTH), 3. Production planning and monitoring (UNIPI), 4. Simulations (PRZ). Finally, the consortium decided to create six EdUs. The generated material is reported as follows (with a link to the online version provided)

- 1. I) <u>Mechatronic Actuators</u>, Partner: UNILJ¹ (Appendix)
- 2. I) Assembly technology; II) Planning and control, Partner: KTH ² (Appendix)
- 3. I) Manufacturing processes, Partner: UNIPI³ (Appendix)
- 4. I) <u>Data analysis</u>; II) <u>Simulation modelling</u>, Partner: PRZ⁴ (Appendix)

TET: The Evolving Textbook

 $^{^1\} https://unilj.sharepoint.com/:f:/r/sites/ErasmusTETproject/Shared\%20Documents/WP3-Core-Textbook-Content-Preparation/WP3-A3\%20Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1\&web=1\&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content/UNILJ?csf=1&web=1&e=SDouMK-Content-Preparation\%20of\%20core\%20textbook\%20content-Preparation%20of\%20core\%20textbook\%20content-Preparation%20of\%20core\%20textbook\%20content-Preparation%20of\%20core\%20textbook\%20content-Preparation%20of\%20core\%20textbook\%20content-Preparation%20of\%20core\%20content-Preparation%20of\%20core\%20content-Preparation%20of\%20core\%20content-Preparation%20of\%20core\%20content-Preparation%20content-$

 $^{^2\} https://unilj.sharepoint.com/:f:/r/sites/ErasmusTETproject/Shared\%20Documents/WP3-Core-Textbook-Content-Preparation/WP3-A3\%20Preparation\%20of\%20core\%20textbook\%20content/KTH?csf=1\&web=1\&e=LTVCGG$

³ https://unilj.sharepoint.com/:f:/r/sites/ErasmusTETproject/Shared%20Documents/WP3-Core-Textbook-Content-Preparation/WP3-A3%20Preparation%20of%20core%20textbook%20content/UNIPI?csf=1&web=1&e=QOygrT

 $^{^4 \} https://unilj.sharepoint.com/:f:/r/sites/ErasmusTETproject/Shared\% 20 Documents/WP3-Core-Textbook-Content-Preparation/WP3-A3\% 20 Preparation\% 20 of \% 20 core\% 20 textbook\% 20 content/PRZ?csf=1 \& web=1 \& e=kI4rN3$

Appendix

TET: The Evolving Textbook

2.2. UNILJ

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- Short description: ILOs has in general from 150 to 250 characters.
- **Bloom Verb Level**: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses
- **Context** where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Course: Mechatronic Actuators, Partner: UNILJ

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO1	Compare pneumatic,	Level 4: analyse,	pneumatic actuators,	selection of a suitable
	hydraulic and electric	compare	hydraulic actuators,	actuator for a particular
	actuators and select a suitable	Level 5: evaluate,	electric actuators,	application
	actuator for a particular	select	characteristics, actuators	
	application in terms of cost,		cost, environmental	(mechatronic application,
	environmental conditions and		conditions, operating	suitable actuator, costs,
	operating conditions.		conditions	environmental conditions,
				operating conditions)
			(actuators,	
			characteristics,	
			comparison)	
ILO2	Understand the role of	Level 2:	semiconductor elements	use of semiconductor
	different electronic	understand	for mechatronic	elements in mechatronic
	semiconductor elements for	Level 3: apply,	actuators, diodes,	actuator applications
	mechatronic actuators and	implement	transistors, thyristors,	
	implement them.		silicon controlled	(signal processing, control
			rectifiers, insulated-gate	and regulation, power
			bipolar transistor,	management, sensing and
			characteristics	feedback, heat dissipation,
				protection)

 $^{^{1}}$ For more info refer to: $\underline{\text{https://doi.org/10.3390/educsci12070438}}.$

			(semiconductor, semiconductor elements, diode, transistor, thyristor)	
ILO3	Implement drive solutions with different electric drives on different platforms.	Level 3: apply, implement	mechanical drives, equations of motion, linear systems, motion trajectories, velocity profiles, axis types, bearing types, coupling types, sensors, torque matching (drives, linear systems, motion, displacement, velocity, acceleration, velocity profile, displacement, precision and accuracy, axes, bearings, couplings)	implementation of drives for mechatronic applications on different platforms (mechatronic application, drive solutions, development platforms)
ILO4	Use a mechatronic actuator in a closed-loop system.	Level 3: apply, use	actuator as part of a control system, modelling of control systems, sensors, open and closed-loop control and regulation, implementation of controllers, PID control (control system, modelling, open-loop control, closed-loop control and regulation, controller, PID control)	mechatronic actuator used in a closed- loop system for precise and stable control according to specified requirements for the time behaviour of a system (actuator precise and stable control, operating requirements, time behaviour)

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO
- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Mechatronic Actuators, Partner: UNILJ

TODO: TOLE TABELO REVIDIRAJ, POTEM KO IZPOLNIŠ ŠE TABELO 2.2. – DEJANSKI TEACHING ASSIGNMENTI

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
ILO1	TA 1.1	LA 1.1	Encourages contact between students
Compare	Present different types	Listen to the	and faculty
pneumatic,	of actuators	presentation, take	LA 1.1
hydraulic and		notes, and ask	LA 1.2
electric actuators	TA 1.2	questions.	TA 1.4
and select a	Explain the advantages		LA 1.4
suitable actuator	and disadvantages of	LA 1.2	
for a particular	different types of	Listen to the	Develops cooperation among students
application in	actuators in real	presentation, take	LA 1.3
terms of cost,	applications in terms of	notes, and ask	
environmental	cost, environmental	questions.	Encourages active learning
conditions and	and operating		TA 1.3
operating	conditions.	LA 1.3	TA 1.4
conditions		Apply and evaluate the	LA 1.3
	TA 1.3	use of selected types	LA 1.4
	Describe and	of electric actuators in	
	demonstrate real-world	a laboratory	Gives prompt feedback
	applications of selected	environment: DC	TA 1.3
	types of actuators with	motor, stepper motor,	TA 1.4
	a focus on electric	servo motor,	LA 1.3
	actuators (motors).	asynchronous motor.	LA 1.4
		Students work in small	
	TA 1.4	groups.	Emphasizes time on task
	Encourage discussion		LA 1.3
	on the correct choice of	LA 1.4	LA 1.4
	actuator type	Discuss the experience	
		of testing actuators in	Respects diverse talents and ways of

 $^{^{2}}$ 7 principles of good learning:

- encourages contact between students and faculty,
- develops reciprocity and cooperation among students,
- encourages active learning,
- gives prompt feedback,
- · emphasizes time on task,
- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

	depending on the	the laboratory and	learning
	application.	discuss the selection of	LA 1.3
		actuators.	LA 1.4
ILO2	TA 2.1	LA 2.1	Encourages contact between students
Understand the	Present semiconductor	Listen to the	and faculty
role of different	elements.	presentation,	LA 2.1
electronic		take notes, and ask	LA 2.2
semiconductor	TA 2.2	questions.	
elements for	Explain and show		Develops cooperation among students
mechatronic	where and how are	LA 2.2	LA 2.3
actuators and	semiconductor	Listen to the	
implement them.	elements used for	presentation,	Encourages active learning
	mechatronic	take notes and ask	TA 2.3
	applications.	questions.	LA 2.3
	TA 2.3.	LA 2.3	Gives prompt feedback
	Describe a real	Apply semiconductor	TA 1.3
	application of	elements for	LA 1.3
	semiconductor	processing signals	LA 1.3
	elements usage for	(rectifying), for	Emphasizes time on task
	_	1 . ,	LA 2.3
	processing signals.	generating control	LA 2.3
		signals, for amplifying	Barranta diversa talanta and wave of
		and switch operations,	Respects diverse talents and ways of
		and to tackle common	learning
		issues.	LA 2.3
ILO3	TA 3.1	LA 3.1	Encourages contact between students
Implement drive	Present types of drives	Listen to the	and faculty
solutions with	for mechatronic	presentation,	LA 3.1
different electric	actuators: linear drives,	take notes, and ask	LA 3.2
drives on different	drives with wheels,	questions. Evaluate a	LA 3.3
platforms.	force-based drives.	variable frequency	TA 3.5
		drive (VFD) for control	LA 3.5
	TA 3.2	of an asynchronous	
	Present mechanical	electric motor).	Develops cooperation among students
	components of drives:	Students work in small	LA 3.1
	guides, axes, bearings,	groups.	LA 3.4
	couplings, sensors.	LA 3.2	Encourages active learning
	TA 3.3	Listen to the	LA 3.1
			TA 3.3
	Explain and show	presentation,	TA 3.4
	mathematical models	take notes, and ask	
	of drive systems:	questions.	LA 3.4
	equations of motion		
	(displacement, velocity,	LA 3.3	Gives prompt feedback
	acceleration), friction.	Listen to the	LA 3.1
	T. 2.4	presentation,	TA 3.3
	TA 3.4	take notes, and ask	TA 3.4
	Explain and show	questions.	LA 3.4
	properties of drives:		TA 3.5
	motion trajectory,	LA 3.4	LA 3.5
	absolute and relative	Apply and evaluate	
	displacement, velocity	measurements of	Emphasizes time on task
	profiles, precision and	actuator displacement,	LA 3.1
	accuracy, torque	velocity and	LA 3.4
	matching.	acceleration. Apply and	
	1	evaluate different	

	TA 2 F Engage	volecity profiles	Despects diverse telepts and ways of
	TA 3.5 Encourage discussion on drive	velocity profiles. Students work in small	Respects diverse talents and ways of learning
	solutions for different		
		groups.	LA 3.1
	applications and		LA 3.4
	development	LA 3.5	LA 3.5
	platforms.	Discuss the experience	
		of testing drives in the	
		laboratory and	
		evaluate its properties.	
ILO 4	TA 4.1	LA 4.1	Encourages contact between students
Use a mechatronic	Present the basics of	Listen to the	and faculty
actuator in a	linear control theory.	presentation, take	LA 4.1
closed-loop		notes, and ask	LA 4.2
system.	TA 4.2	questions.	
	Describe and show the		Develops cooperation among students
	types of control (open-	LA 4.2	LA 4.3
	loop, closed-loop).	Listen to the	LA 4.5
	.,	description, take notes,	
	TA 4.3	and ask questions.	Encourages active learning
	Describe and show the	=====================================	TA 4.2
	types of measurements	LA 4.3	TA 4.3
	needed for closed-loop	Apply and evaluate	TA 4.4
	control: potentiometer,	resolver,	TA 4.5
	resolver, encoder,	potentiometer,	LA 4.3
	tacho-generator.	incremental and	LA 4.5
	tacilo-gellerator.		LA 4.3
	TA 4.4	absolute encoder, and	Cives prompt foodbook
		tacho-generator for	Gives prompt feedback
	Explain and show the	measurement of	LA 4.3
	control algorithms with	displacement and	LA 4.5
	emphasis on PID	velocity. Students work	
	control.	in small groups.	Emphasizes time on task
			LA 4.3
	TA 4.5	LA 4.4	LA 4.5
	Describe and show the	Listen to the	
	implementation of	presentation, take	Respects diverse talents and ways of
	control algorithms in	notes, and ask	learning
	practical applications:	questions.	LA 4.3
	PIC microcontroller,		LA 4.5
	Arduino	LA 4.5	
	microcontroller,	Apply and evaluate	
	Raspberry Pi micro	control algorithm on	
	computer	Arduino	
		microcontroller using	
		Arduino IDE and C++	
		programming	
		language. Students	
		work in small groups.	
		work in sman groups.	l

Table 2.2: TAs for the Course: Mechatronic Actuators, Partner: UNILJ

Course moment ³	Weekday, date and time slot ⁴	LA Type ⁵	Location ⁶	ILO Code	TLA Code ⁷	Course material ⁸	Keywords	Link to the material
Class	Friday, 2 hours	Lecture	Presence	ILO 1	TA 1.1 LA 1.1	Slides	Introduction History of actuators Types of actuators Actuators as part of control systems	SLIDES
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 1	TA 1.1 TA 1.2 LA 1.1 LA 1.2	Slides	Types of actuators Pneumatic actuators Hydraulic actuators Advantages and disadvantages Applications of actuators Electrical and mechanical components for actuators	SLIDES
Class	Friday, 2 hours	Lecture	Presence	ILO 1	TA 1.1 LA 1.1	Slides	Electrostatics Electromagnetism Electric motors Typical signals Properties of electrical signals (DC and AC)	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 1	TA 1.1 LA 1.1	Video lecture, slides	Electrostatics and electrostatics and electromagnetism Solving DC circuits Use superposition for linear problems Loop current method Electrical signals and properties, PWM Using Matlab to solve circuit equations	SLIDES VIDEO
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.3 LA 1.3	E-classroom laboratory setup description and exercise instructions, report submission	Generating electrical signals with a microcontroller Arduino Due microcontroller Arduino IDE and C++ Step signal Square signal Square signal Trapezoidal signal PWM signal Sine signal Sin	LINK
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 2	TA 2.1 TA 2.2 TA 2.3 LA 2.1 LA 2.2	Slides	Semiconductor elements for mechatronic actuators Diodes Bipolar transistors Unipolar transistors Thyristors Silicon controlled rectifier	SLIDES

 $^{^{3}}$ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 $^{^{\}rm 4}$ It helps understanding relative positioning and duration of different course moments.

⁵ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.

⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

							Insulated-gate bipolar transistors	
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 2	TA 2.1 TA 2.2 TA 2.3 LA 2.1 LA 2.2 LA 2.3	Video lecture, slides	Use of a diode to rectify an AC signal Design of a suitable rectifier circuit for AC voltage Use of a bipolar transistor to control a DC motor Use of an H-bridge with MOSFET transistor for bidirectional control of a DC motor Silicon controlled rectifier (SCR) and its use to compensate for the change in motor torque with changes in magnetic field Insulated gate bipolar transistor used as a switch in power applications	SLIDES VIDEO
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Slides	DC electric motor Construction of a direct current motor Principles of operation Mathematical models Properties of an electrical direct current signal Block diagram of a DC motor Separately excited DC motor Parallel (shunt-excited) DC motor Series-excited (self- excited) DC motor Hybrid DC motor	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Video lecture, slides	Direct current electric motor Basic properties and equations Brushless DC motor Separately excited DC motor Parallel (shunt-excited) DC motor Series-excited (self-excited) DC motor Hybrid DC motor	SLIDES VIDEO
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.2 TA 1.3 TA 1.4 LA 1.3 LA 1.4 LA 3.4 LA 4.3	E-classroom laboratory setup description and exercise instructions, report submission	DC electric motor Electrical wiring Generation of a PWM signal for controlling a DC motor Tachometer for measuring the motor speed Arduino Due microcontroller Arduino IDE and C++ Measuring the speed via PWM characteristics Setting the PWM signal for a specific motor speed Application of the motor brake	LINK
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 LA 1.1 LA 1.2	Slides	H-bridge with MOSFET transistors for controlling DC motors	SLIDES

							Pulse width modulated signal for controlling a DC motor DC motor as part of a control system Determining the parameters of DC motor control systems using impulse transfer function PIC and Arduino microcontrollers for DC motors	
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.2 TA 1.3 TA 1.4 LA 1.3 LA 1.4 LA 3.4	E-classroom laboratory setup description and exercise instructions, report submission	Robot arm HiWonder Jetmax Servo motor system Robot arm HiWonder Jetmax Servo motor data sheet analysis: type, motors, control, characteristics Control of servo motors via a web-based graphical user interface NodeMCU ESP32 development board Arduino IDE and C++ Remote (programmable) servo motor control for robot arm displacements Basic robot arm displacements Advanced robot arm displacements (object movement)	LINK
Class	Friday, 2 hours	Lecture	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 LA 1.1 LA 1.2	Slides	Modelling of electrical AC signals Representation of AC signals using phasors Generalisation of resistance and conductance – impedance and admittance 3-phase AC electric sources and motors	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Video lecture, slides	AC electric signals and properties RLC circuits Impedance and admittance Solving AC circuits Power in AC circuits Power factor correction 3-phase AC generator 3-phase AC motor Delta or star circuits	SLIDES VIDEO
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Slides	Asynchronous motor Principles of operation Squirrel cage asynchronous motor Asynchronous motor with wound rotor Properties of the asynchronous motor Mathematical model and linearisation Types of asynchronous motor control Variable frequency drive Synchronous AC motors	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1	Video lecture, slides	Synchronous motor Characteristics of the synchronous motor: torque, synchronous reactance, power	SLIDES VIDEO

					LA 1.2		Synchronous motor with	
							variable frequency drive (VFD) Induction motor Characteristics of the induction motor: rotor speed, full load torque, slip	
							Induction motor with direct-on-line drive (DOL) Induction Asynchronous motor with	
							wound rotor Squirrel cage asynchronous motor Double squirrel cage asynchronous motor	
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.2 TA 1.3 TA 1.4 TA 3.4 LA 1.3 LA 1.3 LA 3.1	E-classroom laboratory setup description and exercise instructions, report submission	Asynchronous motor Data sheet analysis: type, principle of operation, dynamic properties, stability Variable frequency drive (VFD) Analysing the data sheet and user manual: operating principles, manual control Integrated manual control of the VFD Setting the asynchronous speed by adjusting the VFD frequency Analysing and applying the motor velocity profile	LINK
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.2 TA 1.3 TA 1.4 LA 1.3 LA 1.4 LA 3.4	E-classroom laboratory setup description and exercise instructions, report submission	Asynchronous motor Variable frequency drive (VFD) Programmable motor control with the CX-Drive software Basic control algorithm (on/off control) Setting the motor speed Setting the motor velocity profile Setting the torque characteristic (V/f curve)	LINK
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Slides	Stepper motors Principles of operation Construction of stepper motors Types of stepper motors Bipolar stepper motors Unipolar stepper motors Hybrid stepper motors Stepper motor control Properties of stepper motors Microstepping Brushless DC motor (BLDC)	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 1	TA 1.1 TA 1.2 TA 1.3 TA 1.4 LA 1.1 LA 1.2	Video lecture, slides	Stepper motors Bipolar stepper motors Unipolar stepper motors Microstepping Stepper motor with linear guides	SLIDES VIDEO
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 1	TA 1.2 TA 1.3 TA 1.4 LA 1.3	E-classroom laboratory setup description	DC stepper motors Analysing the data sheet: type, properties, dynamic characteristics	LINK

Class	Friday, 2 hours	Lecture	Presence	ILO 3	TA 3.1 TA 3.3 TA 3.4 TA 3.5	and exercise instructions, report submission	AdaFruit MotorShield shield for the control of stepper motors Arduino Due microcontroller Arduino IDE and C++ Stepper motor operating modes: single, double, interleave and microstep operation Microstep: full step, 1/8 microstep, 1/16 microstep Mechanical drives Theoretical basics Equation of motion: moment of inertia, load	SLIDES
					LA 3.1 LA 3.3		moment, acceleration, transmission ratio Motion trajectories Velocity profiles	
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 3	TA 3.1 TA 3.2 TA 3.3 TA 3.5 LA 3.1 LA 3.2	Slides	Mechanical drives Linear systems Linear guides Systems with wheels Force-based systems Absolute and relative displacement Precision and accuracy Components of drives: axes, bearings, couplings, sensors Torque matching	SLIDES
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 4	TA 4.1 TA 4.2 TA 4.3 TA 4.5 LA 4.1 LA 4.2	Slides	Mechatronic actuator in a closed-loop system Open-loop system Closed loop system Sensors: resolver, potentiometer, encoder, tachogenerator Types of electric motors control	SLIDES
Class	Friday, 2 hours	Problem- solving tasks, Debates, Brainstorm	Presence	ILO 4	TA 4.1 TA 4.3 LA 4.1 LA 4.3	Video lecture, slides	Methods for measuring the displacement, velocity and acceleration of mechatronic actuators Resolver Rotary potentiometer Absolute encoder Incremental encoder	SLIDES VIDEO
Laboratory	4 groups, 2 hours	Laboratory, Group work, Discussion	Presence, home	ILO 4	TA 4.1 TA 4.3 TA 4.5 LA 4.1 LA 4.3 LA 4.5	E-classroom laboratory setup description and exercise instructions, report submission	Absolute rotary encoder Incremental rotary encoder encoder Arduino Due microcontroller Arduino IDE Arduino C++ programming languages Electrical wiring Programmes for reading the encoder output Programmes for converting the encoder outputs into rotation angle and rotation speed	LINK
Class	Friday, 2 hours	Lecture, Discussion	Presence	ILO 4	TA 4.2 TA 4.4 TA 4.5 LA 4.2 LA 4.4	Slides	Types of controllers for electric motors Microcontroller Microcomputer Industrial computer PLC Control algorithms	SLIDES

							PID control	
Class	Friday, 2 hours	Lecture	Presence	ILO 1	TA 1.1	Slides	Alternative drives for	SLIDES
					TA 1.2		mechatronic actuators	
					TA 1.3		Piezoelectric materials	
					TA 1.4		Piezoelectric motors	
					LA 1.1		Shape memory-based	
					LA 1.2		alloy actuators	
							Solenoids	

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)
Remember	arrange, define, list, identify	Lecture, Reading materials
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-share Fishbowl, Laboratory
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Table 4: TAs for the Course: Mechatronic Actuators, Partner: UNILJ

ILO reference (Highlight the	Assessment task 1	Assessment task 2	Assessment task n
Verb)			
ILO1	Bloom level: 5	Bloom level: 6	
Compare pneumatic,			
hydraulic and electric	Type***: group work	Type***: Project	
actuators and select a			
suitable actuator for a	Short description:	Short description:	
particular application in	Write a report on	Design and build a	
terms of cost,	laboratory exercises on	mechatronic system that	
environmental conditions	different types of actuators.	contains a selected	
and operating conditions	The report includes	actuator.	
	measurements, answers to		
	the questions, evaluations		
	and discussions.		
ILO2	Bloom level: 5	Bloom level: 6	
Understand the role of			
different electronic	Type***: group work	Type***: Project	
semiconductor elements	Chart description	Share dansitation	
for mechatronic actuators	Short description:	Short description:	
and implement them.	Write a report on	Design and build a	
	laboratory exercises on	mechatronic system that	
	different types of semiconductor	uses semiconductor	
	components. The report	components for various functionalities.	
	1 '	Tunctionalities.	
	includes measurements,		
	answers to the questions, evaluations and discussions.		
ILO3	Bloom level: 5		
Implement drive solutions	Biodili level. 5		
with different electric	Type***: group work		
drives on different	Type . group work		
platforms.	Short description:		
placionnis.	Write a report on		
	laboratory exercises on		
	different types of electric		
	motor drives. The report		
	includes measurements,		
	answers to the questions,		
	evaluations and discussions.		
ILO4	Bloom level: 5	Bloom level: 6	
Use a mechatronic actuator			
in a closed-loop system.	Type***: group work	Type***: Project	
, ,	,		
	Short description:	Short description:	
	Write a report on	Design and build a	
	laboratory exercises on	mechatronic system that	
	different types of electric	functions as a closed-loop	
	motor closed-loop control.	system.	
	The report includes		
	measurements, answers to		

the questions, evaluations	
and discussions.	

Table 5: AT examples

Bloom Taxonomy	EGV	Assessment Task (Examples)
Remember	arrange, define, list, identify	Multiple choice, quiz/test, question banks, take-home examinations Concept/mind maps, interview, debate, problem sheet, minutes,
Comprehension	classify, discuss, present, rewrite	forum posts, open-book, individual presentation, group presentation, viva-voce
Apply	solve, calculate, demonstrate, organize, use	Abstract, case study, problem-solving tasks, roleplay, group work, portfolio, workbook, project
Analyze	categorize, contrast, compare, debate, inspect	Thesis, annotated bibliography, literature review, debates, class discussion, jigsaw method, think-pair-share, fishbowl, laboratory
Evaluate	assess, conclude, justify, measure	Report, reflection, journal, debates, mind map, peer evaluation, group work, teamwork
Create	design, develop, revise, formulate	Project, thesis, article, essay, creative work, demonstration, performance, roleplay, recorded/rendered creative work,

2.3. KTH

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- **Short description**: ILOs has in general from 150 to 250 characters.
- Bloom Verb Level: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses and in italics
- Context where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Course Assembly technology, Partner: KTH

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO1	describe the role of the assembly process within the manufacturing domain and discuss its importance	Level_2	the role of the assembly process, importance (assembly process, assembly line)	Manufacturing domain
ILO2	create mathematical and feature models of assemblies and use them in context of design and evaluation of assembly systems	Level_6	mathematical and feature models of assemblies (modelling, assembly feature, parameters, constraints, tolerances)	design and evaluation of assembly systems (design, assembly system)
ILO3	account for the dynamic and static constraints of a manual or automatic assembly process	Level_4	the dynamic and static constraints (constraints, dynamic, static)	a manual or automatic assembly process (assembly process, manual assembly, automatic assembly)

 $^{^{\}rm 1}$ For more info refer to: $\underline{\rm https://doi.org/10.3390/educsci12070438}.$

ILO4	analyse a given product and define feasible assembly sequences	Level_4	Feasible assembly sequences (assembly sequences, product analysis, workflow analysis)	Given product
ILO5	choose the best sequence by applying technical and economic criteria	Level_4	Best sequence applying technical and economic criteria (sequence analysis, technical criteria, economic criteria)	Given product
ILO6	describe the function of all the elements of an assembly system (both automatic and manual)	Level_2	the function of all the elements (function, element)	an assembly system (both automatic and manual) (assembly system, manual assembly, automatic assembly)
ILO7	evaluate the impact of the product design on the assembly process, by applying the Boothroyd DFA methodologies	Level_5	the impact of the product design by applying the Boothroyd DFA methodologies (DFA, product design, impact, design efficiency)	on the assembly process (assembly process)
ILO8	identify the requirements on design of an assembly station and provide instructions for the subsequent implementation	Level_2	Requirements on design and instructions for the subsequent implementation (Assembly sequence, assembly requirements, design requirement)	Assembly station (assembly station)
ILO9	calculate the costs and the most important economical key performance indicators (KPIs) for standard assembly systems (both manual and automatic)	Level_3	the costs and the most important economical key performance indicators (KPIs) (KPI, cost, economic performance)	standard assembly systems (both manual and automatic) (standard assembly system, manual assembly, automatic assembly)

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO
- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Assembly technology, Partner: KTH

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
describe the role of the assembly process within the	TA 1.1 Present the role of assembly process in manufacturing.	LA 1.1 Listen to the presentation, take notes, and ask questions.	Encourages contact between students and faculty, LA 1.1 LA1.2
manufacturing domain and discuss its importance	TA1.2 Explain why assembly process are important.	LA 1.2 Listen to the presentation, take notes and ask questions.	Gives prompt feedback, LA 1.3
		LA 1.3 Discuss the importance of assembly process.	
ILO2	TA2.1	LA 2.1	Encourages contact between students
create	Explain mathematical and	Listen to the presentation, take notes, and ask	and faculty LA 2.1
mathematical and	feature models of	questions.	LA 2.2
feature models of	assemblies in the	questions.	LA 2.2
assemblies and use	context of design		Encourages active learning
them in context of	and evaluation of		LA 2.2
design and	assembly systems.		
evaluation of			Gives prompt feedback,
assembly systems	TA2.2	LA 2.2	LA 2.2
	Describe and show	Apply and evaluate	
	instructions for the	appropriate models.	Respects diverse talents and ways of
	project		learning

 $^{^{2}}$ 7 principles of good learning:

- encourages contact between students and faculty,
- develops reciprocity and cooperation among students,
- encourages active learning,
- gives prompt feedback,
- emphasizes time on task,
- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

			TA 2.2 LA 2.2
ILO3	TA3.1	LA 3.1	Encourages contact between students
ilos	Explain dynamic and	Listen to the presentation,	and faculty
account for the	static constraints of	take notes, and ask	LA 3.1
dynamic and static	assembly process	questions.	LA 3.2
constraints of a	discillary process	questions.	27.3.2
manual or	TA3.2	LA 3.2	Encourages active learning
automatic	Describe and show	Evaluate the constraints of	LA 3.2
assembly process	instructions for the	assembly process.	
ассолист, р. с с с с	project		Gives prompt feedback,
	' '		LA 3.2
			Respects diverse talents and ways of
			learning
			TA 3.2
			LA 3.2
ILO4	TA 4.1	LA 4.1	Encourages contact between students
	Explain assembly	Listen to the presentation,	and faculty
analyse a given	sequences.	take notes, and ask	LA 4.1
product and define		questions.	LA 4.2
feasible assembly			
sequences	TA 4.2	LA 4.2	Encourages active learning
	Describe and show	Evaluate and define	LA 4.2
	instructions for the	feasible assembly	
	project	sequence.	Gives prompt feedback,
			LA 4.2
			Respects diverse talents and ways of
			learning
			TA 4.2
			LA 4.2
ILO5	TA 5.1	LA 5.1	Encourages contact between students
	Explain technical	Listen to the presentation,	and faculty
choose the best	and economic	take notes, and ask	LA 5.1
sequence by	criteria for assembly	questions.	LA 5.2
applying technical	sequences.		
and economic			Encourages active learning
criteria		LA 5.2	LA 5.2
	TA 5.2	Evaluate and choose the	
	Describe and show	best assembly sequence	Gives prompt feedback,
	instructions for the	using technical and	LA 4.2
	project	economic criteria.	
			Respects diverse talents and ways of
			learning
			TA 5.2
11.00	TA C 1	14.6.1	LA 5.2
ILO6	TA 6.1	LA 6.1	Encourages contact between students
والمام والمام والمام	Present the function	Listen to the presentation,	and faculty,
describe the	of elements of	take notes, and ask	LA 6.1
function of all the	automatic and	questions.	
elements of an	manual assembly		
assembly system	system.		
(both automatic			
and manual)			
ILO7	TA 7.1	LA 7.1	Encourages contact between students
	1	i e	and faculty

evaluate the	Explain DFA	Listen to the presentation,	LA 7.1
impact of the	methodologies.	take notes, and ask	LA 7.2
product design on		questions.	
the assembly			Encourages active learning
process, by			LA 7.2
applying the	TA 7.2	LA 7.2	
Boothroyd DFA	Describe and show	Apply DFA methodologies	Gives prompt feedback,
methodologies	instructions for the project	to given product.	LA 7.2
			Respects diverse talents and ways of
			learning
			TA 7.2
			LA 7.2
ILO8	TA 8.1	LA 8.1	Encourages contact between students
	Explain design	Listen to the presentation,	and faculty
identify the	requirements of	take notes, and ask	LA 8.1
requirements on design of an	assembly station.	questions.	LA 8.2
assembly station			Encourages active learning
and provide			LA 8.2
instructions for the	TA 8.2	LA 8.2	
subsequent	Describe and show	Discuss and explain the	Gives prompt feedback,
implementation	instructions for the	design requirements for	LA 8.2
	project	assembly station	
	'	implementation.	Respects diverse talents and ways of
			learning
			TA 8.2
			LA 8.2
ILO9	TA 9.1	LA 9.1	Encourages contact between students
	Explain costs	Listen to the presentation,	and faculty
calculate the costs	evaluation and	take notes, and ask	LA 9.1
and the most	economical KPIs for	questions.	LA 9.2
important	manual and		
economical key	automatic assembly		Encourages active learning
performance	systems.		LA 9.2
indicators (KPIs)			
for standard			Gives prompt feedback,
assembly systems			LA 9.2
(both manual and	TA 9.2	LA 9.2	
automatic)	Describe and show	Use costs evaluation and	Respects diverse talents and ways of
•	instructions for the	KPIs for manual and	learning
	project	automatic assembly.	TA 9.2
			LA 9.2

Table 2.2: TAs for the Course: Assembly technology, Partner: KTH

Course moment ³	Weekday, date and time slot ⁴	LA Type⁵	Location ⁶	ILO Code	TLA Code ⁷	Course material ⁸	Keywords	Link to the material
Class	2 hours	Lecture	IRL	ILO1	TA1.1 TA1.2	slides	Introduction Industrial assembly Assembly model Key characteristic Assembly sequences and precedencies Assembly motions Cost evaluation Elements of system design	link
Class	2 hours	Lecture	IRL	ILO3 ILO6 ILO8	TA3.1 TA3.2 TA6.1 TA6.2 TA8.1 TA8.2	slides	Manual assembly Analysis of Single Model Assembly Lines Line Balancing Algorithms Mixed Model Assembly Lines Workstation Assembly Line Design Alternative Assembly Systems	link
Tutorial	2 hours	Tutorial	IRL	ILO4 ILO5	TA4.1 TA4.2 TA5.1 TA5.2	slides	Assembly sequences and precedencies	link
Tutorial	2 hours	Tutorial	IRL	ILO4	TA4.1 TA4.2	slides	Line balancing	link
Class	2 hours	Lecture	IRL	ILO3 ILO6	TA3.1 TA3.2 TA6.1 TA6.2	slides	Automatic assembly line High speed Qualitative analysis Assembly automation System configuration Feeder Partial automation	link
Class	2 hours	Lecture	IRL	ILO7	TA7.1 TA7.2	slides	DFA Degins for manual assembly Benefits Problems Design guidelines Design for automatic assembly	link
Tutorial	2 hours	Tutorial	IRL	ILO7	TA7.1 TA7.2	slides	DFA DFAA	Link Link Link
Class	2 hours	Lecture	IRL	ILO8	TA8.1 TA8.2	slides	Sensors Actuators Analog-to-digital conversion Digital-to-analog conversion Input/output devices Discrete data	Link
Class	2 hours	Lecture	IRL	ILO8	TA8.1 TA8.2	slides	Grasping process Grasping principles	link

 $^{^{3}}$ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 ϵ

 $^{^{\}rm 4}$ It helps understanding relative positioning and duration of different course moments.

⁵ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.

⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

							Releasing principles Monitoring principles Hybrid grippers	
Class	2 hours	Lecture	IRL	ILO8	TA8.1 TA8.2	slides	Robot anatomy Robot attributes Robot control systems Robotics Sensors Industrial robots applications Robot programming Robot accuracy Robot repeatability	link
Tutorial	2 hours	Tutorial	IRL	ILO9	TA9.1 TA9.2	slides	Cost evaluation Manual assembly Automatic assembly	Link
Homework	25 hours (Throughout the course)	Create a new report Group work Problem- solving tasks	IRL Virtual Home	ILO2 ILO3 ILO4 ILO5 ILO7 ILO8 ILO9	TA2.1 TA2.2 TA3.1 TA3.2 TA4.1 TA4.2 TA5.1 TA5.2 TA7.1 TA7.2 TA8.1 TA8.2 TA9.1	-	Product description Bill of material Assembly feature Liaison diagram Precedence diagram Design for assembly Manual assembly Line balancing Workstation design Economic analysis Assembly systems	-

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)
Remember	arrange, define, list, identify	Lecture, Reading materials
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-shan Fishbowl, Laboratory
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Link to material

Table 4: ATs for the Course: Assembly Technology, Partner: KTH

ILO reference (Highlight the Verb)	Assessment task 1	Assessment task 2	Assessment task n
ILO1	Bloom level: 2		
describe the role of the assembly process within the manufacturing domain	Type***: Exam question Short description: Answer		
and discuss its importance	questions on the role of the assembly process within manufacturing domain.		
ILO2	Bloom level: 6		
create mathematical and feature models of assemblies and use them in context of design and evaluation of assembly systems	Type***: Project Short description: Analyse the given product and develop mathematical and feature models of assemblies.		
ILO3	Bloom level: 4	Bloom level: 4	
account for the dynamic and static constraints of a	Type***: Exam question	Type***: Project	
manual or automatic	Short description: Answer	Short description: Analyse	
assembly process	questions on the presented dynamic and static	the given product and assess the dynamic and	
	constraints of manual or automatic assembly	static constraints of manual production scenario.	
ILO4	Bloom level: 4		
analyse a given product and define feasible assembly	Type***: Project		
sequences	Short description: Analyse the given product and define its assembly sequence.		
ILO5	Bloom level: 4		

choose the best sequence	Type***: Project	
by applying technical and		
economic criteria	Short description: Analyse	
	the given product and	
	define the best assembly	
	sequence applying technical	
	and economic criteria.	
	and economic criteria.	
ILO6	Bloom level: 2	
11.06	Bloom level: 2	
describe the function of all	Type***: Exam guestion	
	Type * * : Exam question	
the elements of an	a	
assembly system (both	Short description: Answer	
automatic and manual)	questions on function of all	
	elements in assembly	
	system.	
ILO7	Bloom level: 5	
evaluate the impact of the	Type***: Project	
product design on the		
assembly process, by	Short description: Analyse	
applying the Boothroyd	the given product and	
DFA methodologies	assess its design applying	
DITT MELINGUE OF CO	the DFA method.	
	the Britimethou.	
ILO8	Bloom level: 2	
identify the consistence of	T*** D	
identify the requirements	Type***: Project	
on design of an assembly		
station and provide	Short description: Analyse	
instructions for the	the given product and	
subsequent	define its requirements on	
implementation	design of an assembly	
	station.	
ILO9	Bloom level: 3	
calculate the costs and the	Type***: ***: Project	
most important economical		
key performance indicators	Short description: Analyse	
(KPIs) for standard	the given product and	
assembly systems (both	calculate its costs and KPIs.	
manual and automatic)	133 233 4114 1115	
manaar and adtornatic)		

Table 5: AT examples

Bloom Taxonomy	EGV	Assessment Task (Examples)
Remember	arrange, define, list, identify	Multiple choice, quiz/test, question banks, take-home examinations Concept/mind maps, interview, debate, problem sheet, minutes,
Comprehension	classify, discuss, present, rewrite	forum posts, open-book, individual presentation, group presentation, viva-voce
Apply	solve, calculate, demonstrate, organize, use	Abstract, case study, problem-solving tasks, roleplay, group work, portfolio, workbook, project
Analyze	categorize, contrast, compare, debate, inspect	Thesis, annotated bibliography, literature review, debates, class discussion, jigsaw method, think-pair-share, fishbowl, laboratory
Evaluate	assess, conclude, justify, measure	Report, reflection, journal, debates, mind map, peer evaluation, group work, teamwork
Create	design, develop, revise, formulate	Project, thesis, article, essay, creative work, demonstration, performance, roleplay, recorded/rendered creative work,

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- **Short description**: ILOs has in general from 150 to 250 characters.
- **Bloom Verb Level**: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses and in italics
- Context where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Course Planning and control, Partner: KTH

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO1	explain fundamental	Level_2	fundamental principles	in traditional production
	principles used in traditional			planning and control
	production planning and		(production planning,	systems
	control systems		production control,	
			scheduling, inventory	(production planning,
			management, demand	production control)
			forecasting, capacity	
			planning, production	
			efficiency)	
ILO2	develop aggregate plans for	Level_6	aggregate plans	manufacturing of a multi-
	manufacturing of a multi-			component product
	component product		(aggregate planning,	
			resource allocation,	(multi-component
			demand forecasting, cost optimization)	product)
ILO3	propose and motivate a	Level 3	Master Production	a given aggregate plan
1603	Master Production Schedule	Levei_3	Schedule and a Material	a giveri aggregate piari
	and a Material Requirements		Requirements Plan	
	Plan for a given aggregate		nequirements rium	
	plan		(MRP, bill of material,	
	F		enterprise resource	
			planning, MPS)	

¹ For more info refer to: https://doi.org/10.3390/educsci12070438.

ILO4	apply proper inventory control methods for a product with known demand	Level_3	proper inventory control methods	a product with known demand
			(inventory, control, type of inventory, ABC analysis, EOQ model, quantity discount model)	(product, demand)
ILO5	choose the best operations scheduling approach to optimize certain shop floor performance indicators	Level_5	the best operations scheduling approach (scheduling, operations, sequencing rules, line balancing)	optimize certain shop floor performance indicators (KPI, performance indicator)
ILO6	describe the principles of push and pull control policies	Level_2	the principles of push and pull control policies (push, pull, control policies)	macecory
ILO7	explain and utilize appropriate lean tools to continuously improve shop floor performance	Level_2 Level_3	appropriate lean tools (lean philosophy, tools, 5S, Toyota production system, wates, value stream mapping, PDCA, SMED, Kanban)	continuously improve shop floor performance (continuous improvement, performance)
ILO8	apply value stream mapping for current and future states to a given case study	Level_3	value stream mapping for current and future states (value stream mapping, current state, future state, action plan, lead time, capacity analysis, continuous flow, factory layout, product families, heijunka)	a given case study (case study)

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO

- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Planning and control, Partner: KTH

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
explain fundamental principles used in traditional production planning and control systems	TA 1.1 Present the principles used in traditional production planning and control systems. TA1.2 Explain why they are important.	LA 1.1 Listen to the presentation, take notes, and ask questions. LA 1.2 Listen to the presentation, take notes and ask questions. LA 1.3 Discuss the importance of	Encourages contact between students and faculty, LA 1.1 LA1.2 Gives prompt feedback, LA 1.3
ILO2 develop aggregate plans for manufacturing of a	TA2.1 Explain aggregate planning for manufacturing multi-component	LA 2.1 Listen to the presentation, take notes, and ask questions.	Encourages contact between students and faculty LA 2.1 LA 2.2
multi-component product	product. TA2.2 Describe and show Examples during class tutorial	LA 2.2 Create, apply and evaluate appropriate aggregate planning solutions.	Encourages active learning LA 2.2 Gives prompt feedback, LA 2.2 Respects diverse talents and ways of learning TA 2.2 LA 2.2
propose and motivate a Master Production Schedule and a	TA3.1 Explain MPS and MRP for aggregate planning	LA 3.1 Listen to the presentation, take notes, and ask questions. LA 3.2	Encourages contact between students and faculty LA 3.1 LA 3.2 Encourages active learning
Material	Describe and show		LA 3.2

² 7 principles of good learning:

- encourages contact between students and faculty,
 develops reciprocity and cooperation among students,
- encourages active learning,
 gives prompt feedback,
 emphasizes time on task,

- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

Examples during tutorial class.	Apply the explained methods MPS and MRP for aggregate planning and solve the exercises proposed on MPS and MRP.	Gives prompt feedback, LA 3.2 Respects diverse talents and ways of learning TA 3.2 LA 3.2
TA 4.1 Explain inventory control methods. TA 4.2 Describe and show Examples during tutorial class	LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Apply and use the inventory control methods in the given exercises.	Encourages contact between students and faculty LA 4.1 LA 4.2 Encourages active learning LA 4.2 Gives prompt feedback, LA 4.2 Respects diverse talents and ways of learning TA 4.2 LA 4.2
TA 5.1 Explain operations scheduling approaches. TA 5.2 Describe and show Examples during tutorial class	LA 5.1 Listen to the presentation, take notes, and ask questions. LA 5.2 Evaluate and select the best operations scheduling approach for optimizing production performance indicators.	Encourages contact between students and faculty LA 5.1 LA 5.2 Encourages active learning LA 5.2 Gives prompt feedback, LA 4.2 Respects diverse talents and ways of learning TA 5.2 LA 5.2
TA 6.1 Present the push and pull control principles.	LA 6.1 Listen to the presentation, take notes, and ask questions.	Encourages contact between students and faculty, LA 6.1
TA 7.1 Explain lean principles and tools. TA 7.2 Describe and show instructions for lean laboratory sessions	LA 7.1 Listen to the presentation, take notes, and ask questions. LA 7.2 Explain, discuss and apply appropriate lean tools during the lean laboratory sessions.	Encourages contact between students and faculty LA 7.1 LA 7.2 Encourages active learning LA 7.2 Gives prompt feedback, LA 7.2 Respects diverse talents and ways of
	TA 4.1 Explain inventory control methods. TA 4.2 Describe and show Examples during tutorial class TA 5.1 Explain operations scheduling approaches. TA 5.2 Describe and show Examples during tutorial class TA 6.1 Present the push and pull control principles. TA 7.1 Explain lean principles and tools. TA 7.2 Describe and show instructions for lean	tutorial class. methods MPS and MRP for aggregate planning and solve the exercises proposed on MPS and MRP. TA 4.1 Explain inventory control methods. TA 4.2 Describe and show Examples during tutorial class TA 5.1 Explain operations scheduling approaches. TA 5.2 Describe and show Examples during tutorial class TA 5.2 Describe and show Examples during tutorial class TA 5.1 Explain operations scheduling approach for optimizing production performance indicators. TA 6.1 Present the push and pull control principles. TA 7.1 Explain lean principles and tools. TA 7.2 Describe and show instructions for lean laboratory sessions TA 7.2 Describe and show instructions for lean laboratory sessions

			TA 7.2
			LA 7.2
ILO8	TA 8.1	LA 8.1	Encourages contact between students
	Explain value	Listen to the presentation,	and faculty
apply value stream	stream mapping	take notes, and ask	LA 8.1
mapping for	tool.	questions.	LA 8.2
current and future			
states to a given			Encourages active learning
case study			LA 8.2
	TA 8.2	LA 8.2	
	Describe and show	Discuss, explain and use	Gives prompt feedback,
	instructions for the	the value stream mapping	LA 8.2
	project	for a given case study.	
			Respects diverse talents and ways of
			learning
			TA 8.2
			LA 8.2

Table 2.2: TAs for the Course: Planning and control, Partner: KTH

Course moment ³	Weekday, date and time slot ⁴	LA Type ⁵	Location ⁶	ILO Code	TLA Code ⁷	Course material ⁸	Keywords	Link to the material
Class	2 hours	Lecture	IRL	ILO1	TA1.1 TA1.2	slides	Production planning, Activities Objectives production control production systems	link
Class	2 hours	Lecture	IRL	ILO1 ILO2	TA1.1 TA1.2 TA2.1	slides	aggregate planning, resource allocation, demand forecasting, cost optimization	link
Class	2 hours	Lecture	IRL	ILO1 ILO4	TA1.1 TA1.2 TA4.1	slides	inventory, control, type of inventory, ABC analysis, EOQ model, quantity discount model	link
Tutorial	2 hours	Tutorial	IRL	ILO2 ILO4	TA2.2 TA4.2	slides	Aggregate planning Inventory control	link
Laboratory	3 hours	Laboratory	IRL	ILO4	TA4.2	Slides	Push control inventory, control, type of inventory, ABC analysis, EOQ model, order point	link
Class	4 hours	Lecture	IRL	ILO1 ILO6 ILO7	TA1.1 TA1.2 TA6.1 TA7.1	slides	lean philosophy, tools, 5S,	link

 $^{^{3}}$ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 $^{^{\}rm 4}$ It helps understanding relative positioning and duration of different course moments.

⁵ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.

⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

							Toyota production system, wates, value stream mapping, PDCA, SMED, Kanban	
Class	2 hours	Lecture	IRL	ILO8	TA8.1	slides	Value stream mapping current state, future state, action plan, lead time, capacity analysis, continuous flow, factory layout, product families, heijunka	link
Project	10 hours (Throughout the course)	Case study Create a new report Group work Problem- solving tasks	IRL Virtual Home	ILO8	TA8.2	Slides Note Task description	value stream mapping, current state, action plan, lead time, capacity analysis, continuous flow, factory layout, product families, heijunka	link
Laboratory	3 hours	Laboratory	IRL	ILO4	TA4.2	Slides	Pull control, inventory, control, type of inventory, ABC analysis, EOQ model, order point	link
Class	2 hours	Lecture	IRL	ILO3	TA3.1	slides	MRP, bill of material, enterprise resource planning, MPS	link
Tutorial	2 hours	Tutorial	IRL	ILO3	TA3.2	slides	MRP, bill of material, enterprise resource planning, MPS	link link
Laboratory	3 hours	Laboratory	IRL	ILO2 ILO ILO7	TA2.2 TA7.2	Slides	Kanban inventory, control, type of inventory, ABC analysis, EOQ model, order point	link
Laboratory	4 hours	Laboratory	IRL	ILO7	TA7.2	-	lean philosophy, tools, 5S, Toyota production system, wates, value stream mapping, PDCA, SMED, Kanban	-
Class	2 hours	Lecture	IRL	ILO5	TA5.1	slides	scheduling, operations, sequencing rules, line balancing KPI	link
Tutorial	2 hours	Tutorial	IRL	ILO5	TA5.2	slides	scheduling, operations, sequencing rules, line balancing KPI	link

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)		
Remember	arrange, define, list, identify	Lecture, Reading materials		
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl		
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory		
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-shar Fishbowl, Laboratory		
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation		
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay		

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Link to material

Table 4: ATs for the Course: Planning and control, Partner: KTH

ILO reference (Highlight the Verb)	Assessment task 1	Assessment task 2	Assessment task n
ILO1	Bloom level: 2		
explain fundamental principles used in	Type***: Exam questions		
traditional production planning and control	Short description: Answer questions related to the		
systems	fundamental principles of production planning and control.		
ILO2	Bloom level: 6		

	I		
develop aggregate plans for manufacturing of a multi- component product	Type***: Exam questions Short description: Solve the proposed exercises and design the aggregate plan accordingly (resource allocation, cost optimization)		
ILO3	Bloom level: 3		
propose and motivate a Master Production Schedule and a Material Requirements Plan for a given aggregate plan	Type***: Exam questions Short description: Solve the proposed exercises on MRP and MPS.		
ILO4	Bloom level: 3	Bloom level: 3	
apply proper inventory control methods for a product with known demand	Type***: Exam questions Short description: Solve the proposed exercises on inventory control (EOQ, order point).	Type***: Laboratory Short description: Analyse and discuss proper inventory control approaches given the proposed production game/simulation.	
ILO5	Bloom level: 5		
choose the best operations scheduling approach to optimize certain shop floor performance indicators	Type***: Exam questions Short description: Solve the proposed exercises on operation scheduling to maximise shop floor performance.		
ILO6	Bloom level: 2	Bloom level: 2	
describe the principles of push and pull control policies	Type***: Exam questions Short description: Answer questions related to push and pull control.	Type***: Laboratory Short description: Discuss the principles of push and pull control in the given assembly line.	
ILO7	Bloom level: 2-3		
explain and utilize appropriate lean tools to continuously improve shop floor performance	Type***: Laboratory Short description: Analyse, explain and discuss proper lean tools to minimise the waste in the given assembly line.		

ILO8	Bloom level: 3	
apply value stream mapping for current and	Type***: Project	
future states to a given case study	Short description: Discuss the inefficiency occurring in the proposed case study. Apply the value stream mapping tool to analyse the give case study. Compile your analysis in a written report.	

Table 5: AT examples

Bloom Taxonomy	EGV	Assessment Task (Examples)
Remember	arrange, define, list, identify	Multiple choice, quiz/test, question banks, take-home examinations Concept/mind maps, interview, debate, problem sheet, minutes,
Comprehension	classify, discuss, present, rewrite	forum posts, open-book, individual presentation, group presentation, viva-voce
Apply	solve, calculate, demonstrate, organize, use	Abstract, case study, problem-solving tasks, roleplay, group work, portfolio, workbook, project
Analyze	categorize, contrast, compare, debate, inspect	Thesis, annotated bibliography, literature review, debates, class discussion, jigsaw method, think-pair-share, fishbowl, laboratory
Evaluate	assess, conclude, justify, measure	Report, reflection, journal, debates, mind map, peer evaluation, group work, teamwork
Create	design, develop, revise, formulate	Project, thesis, article, essay, creative work, demonstration, performance, roleplay, recorded/rendered creative work,

2.4. UNIPI

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- **Short description**: ILOs has in general from 150 to 250 characters.
- **Bloom Verb Level**: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses and in italics
- **Context** where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Course: Manufacturing processes, Partner: Unipi

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO	Evaluate advanced machining	Level_5	advanced machining	Chip removal operations
1	processes and their quality,		processes and their	
	productivity, and costs in		quality, productivity, and	(chip removal,
	manufacturing environments		costs	manufacturing processes,
	and operations			industrial, industry)
			(turning, drilling, milling,	
			and grinding)	
ILO	Design and optimize casting	Level_6	manufacturing, quality	Casting operations
2	processes considering model		and, cost principles of	
	and core design, gating		various casting processes	
	system, cooling modules, and			
	material properties. Evaluate		(model design, core	
	economic feasibility, identify		design, gating system,	
	and rectify common foundry		cooling modules,	
	defects, and apply Design for		material properties,	
	Manufacturing principles.		feasibility, foundry	
			defects,)	
ILO	Evaluate metal forming	Level_5	manufacturing, quality	Metal forming operations
3	processes through extrusion		and, cost principles of	
	and rolling techniques,			

¹ For more info refer to: https://doi.org/10.3390/educsci12070438.

	applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing.		various metal forming processes (extrusion and rolling techniques, principles of deformation and friction analysis, equipment)	
ILO 4	Apply and use metrology concepts such as tolerance, geometric errors, surface texture, precise instruments (calipers, micrometers), and CMMs for accurate inspections, and program measurements effectively	Level_3	Metrology, quality and, cost principles of various inspection processes (tolerance, geometric errors, surface texture, precise instruments (calipers, micrometers), and CMMs)	Metrology and inspection operations
ILO 5	Analyze and evaluate joining techniques in manufacturing such as welding (gas, arc, resistance, brazing, plasma) and related defects	Level_3	manufacturing, quality and, cost principles of various joining processes (welding (gas, arc, resistance, brazing, plasma) and related defects)	Joining operations

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO
- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Manufacturing processes, Partner: Unipi

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
ILO 1 Evaluate advanced machining processes and their quality, productivity, and costs in manufacturing environments and operations	TA 1.1 Present machining processes in manufacturing TA 1.2 Explain how chip removal technology can be applied for manufacturing a part TA 1.3 Describe and show a real application of machining processes for manufacturing a part and instructions for the project case TA 1.4 Encourage discussion on the application provided.	LA 1.1 Listen to the presentation, take notes, and ask questions. LA 1.2 Listen to the presentation, take notes and ask questions. LA 1.3 Apply and evaluate chip removal principles on the project case. LA 1.4 Discuss about the experience on the application provided.	Encourages contact between students and faculty, LA 1.1 LA1.2 Encourages active learning TA 1.3 TA 1.4 LA 1.3 LA 1.4 Gives prompt feedback, TA 1.4 LA 1.3 LA 1.4 LA 1.3 LA 1.3 LA 1.4 Respects diverse talents and ways of learning TA 1.3 LA 1.3

 $^{^{2}}$ 7 principles of good learning:

- encourages contact between students and faculty,
- develops reciprocity and cooperation among students,
- encourages active learning,
- gives prompt feedback,
- · emphasizes time on task,
- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

	I	I	
ILO2	TA 2.1	LA 2.1	Encourages contact between students
Design and	Present casting and	Listen to the presentation,	and faculty,
optimize casting	solidification	take notes, and ask	LA 2.1
processes	processes	questions.	LA2.2
considering model			
and core design,	TA 2.2	LA 2.2	Encourages active learning
gating system,	Explain how casting	Listen to the presentation,	TA 2.3
cooling modules,	process technology	take notes and ask	TA 2.4
and material	can be applied for	questions.	LA 2.3
properties.	manufacturing a		LA 2.4
Evaluate economic	part		
feasibility, identify		LA 2.3	Gives prompt feedback,
and rectify		Apply and evaluate casting	TA 2.4
common foundry	TA 2.3	and solidification	LA 2.3
defects, and apply	Describe and show a	principles on the project	LA 2.4
Design for	real application of	case.	
Manufacturing	casting processes		Respects diverse talents and ways of
principles.	for manufacturing a	LA 2.4	learning
	part and	Discuss about the	TA 2.3
	instructions for the	experience on the	LA 2.3
	virtual simulation	application provided.	
	using FEM software	application provided	
	asing . Em sommer		
	TA 2.4		
	Encourage		
	discussion on the		
	application		
	provided.		
	provided.		
ILO3	TA 3.1	LA 3.1	Encourages contact between students
Fundamental			
Evaluate metal	Present metal	Listen to the presentation,	and faculty,
forming processes	Present metal forming processes	Listen to the presentation, take notes, and ask	and faculty, LA 3.1
		' '	
forming processes		take notes, and ask	LA 3.1
forming processes through extrusion	forming processes	take notes, and ask	LA 3.1 TA 3.1
forming processes through extrusion and rolling	forming processes TA 3.2	take notes, and ask questions.	LA 3.1 TA 3.1 LA3.2
forming processes through extrusion and rolling techniques,	TA 3.2 Explain how metal forming process	take notes, and ask questions.	LA 3.1 TA 3.1 LA3.2 TA 3.2
forming processes through extrusion and rolling techniques, applying principles	TA 3.2 Explain how metal forming process technology can be	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2
forming processes through extrusion and rolling techniques, applying principles of deformation and friction	TA 3.2 Explain how metal forming process technology can be applied for	take notes, and ask questions. LA 3.2 Listen to the presentation,	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and	TA 3.2 Explain how metal forming process technology can be	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback,
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing.	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing.	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation,	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty,
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation,	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty,
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance,	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions.	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors,	TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors, surface texture,	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how metrology	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Listen to the presentation,	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning TA 4.3
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors, surface texture, precise	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how metrology technology can be	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors, surface texture, precise instruments	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how metrology technology can be applied for	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Listen to the presentation,	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning TA 4.3 LA 4.3
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors, surface texture, precise instruments (calipers,	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how metrology technology can be	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning TA 4.3 LA 4.3 Gives prompt feedback,
forming processes through extrusion and rolling techniques, applying principles of deformation and friction analysis, and selecting appropriate equipment for operations like forging and sheet metal processing. ILO 4 Apply and use metrology concepts such as tolerance, geometric errors, surface texture, precise instruments	forming processes TA 3.2 Explain how metal forming process technology can be applied for manufacturing a part TA 4.1 Present metrology principles TA 4.2 Explain how metrology technology can be applied for	take notes, and ask questions. LA 3.2 Listen to the presentation, take notes and ask questions. LA 3.3 Apply and evaluate metal forming principles LA 4.1 Listen to the presentation, take notes, and ask questions. LA 4.2 Listen to the presentation, take notes and ask	LA 3.1 TA 3.1 LA3.2 TA 3.2 Encourages active learning LA 3.3 Gives prompt feedback, LA 3.3 Respects diverse talents and ways of learning LA 3.3 Encourages contact between students and faculty, LA 4.1 LA4.2 Encourages active learning TA 4.3 LA 4.3

inspections, and program measurements effectively	Describe and show a real application of casting processes for manufacturing a part and instructions for the project	Apply and evaluate metrology principles	Respects diverse talents and ways of learning TA 4.3 LA 4.3
ILO5	TA 5.1	LA 5.1	Encourages contact between students
Analyze and	Present joining	Listen to the presentation,	and faculty,
evaluate joining	techniques and	take notes, and ask	LA 5.1
techniques in	principles	questions.	TA 5.1
manufacturing			LA5.2
such as welding	TA 5.2	LA 5.2	TA 5.2
(gas, arc,	Explain how joining	Listen to the presentation,	
resistance, brazing,	technology can be	take notes and ask	Encourages active learning
plasma) and	applied for	questions.	LA 5.3
related defects	assemble multiple		
	components		Gives prompt feedback,
	,	LA 5.3	LA 5.3
		evaluate joining principles	
			Respects diverse talents and ways of
			learning
			LA 5.3

Table 2.2: TAs for the Course: Manufacturing processes, Partner: Unipi

Course moment ³	Weekday, date and time slot ⁴	LA Type⁵	Location ⁶	ILO Code	TLA Code ⁷	Course material ⁸	Keywords	Link to the material
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Orthogonal Cutting Chip Formation Cutting Ratio Cutting Force Cutting Insert Types of Chips Cutting Fluids Tool Insert	link
Homework	3-5 hours	Reading material	Home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Chapter	Orthogonal Cutting Chip Formation Cutting Ratio Cutting Force Cutting Insert Types of Chips Cutting Fluids Tool Insert	link
Homework	minutes	Reflection	Home	ILO1	TA1.1, TA1.2	Videos	Orthogonal Cutting Chip Formation Cutting Ratio	1. <u>link</u> 2. <u>link</u>

 $^{^{3}}$ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 $^{^{\}rm 4}$ It helps understanding relative positioning and duration of different course moments.

⁵ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.

⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

					LA1.1., LA1.2		Cutting Force Cutting Insert Types of Chips Cutting Fluids	
Class, Homework	1 hour	Discussion, Laboratory	Presence and Home	ILO1	TA1.2 TA1.3 LA1.2 LA1.3	www page	Tool Insert Orthogonal Cutting Chip Formation Cutting Ratio Cutting Force Cutting Insert Types of Chips Cutting Fluids Tool Insert	link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Oblique Cutting Cutting Parameters Cutting Edge Angles Machining Parameters Measurement Units Surface Roughness Feed per Revolution Corner Radius Registration Angles	link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Cutting Energy Cutting Power Cutting Pressure Kronenberg's Cutting Force Specific Cutting Energy Single Point Tool Geometry Standardized Tool Angles Main Views and Sections Cutting Angles	link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Clearance Angles Psi Cutting Edge Chi Registration Lambda Cutting Edge Minimum Uncut Chip Thickness Plowing Chip Breakage Diagram Tool Damage Morphology Tool Wear	link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Insert Installation ISO Coding Tool Materials CBN (Cubic Boron Nitride) PVD (Physical Vapor Deposition) CVD (Chemical Vapor Deposition) Tool Damage Morphology Tool Wear Evaluation Parameters	link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Taylor's Law Cost Estimation Active and Idle Times Setup Times Organizational Methods for Efficiency Cost and Time Optimization Economic and Productive Speeds Turning Operations Cylindrical Turning Facing Threading	link
Homework	3-5 hours	Reading material	home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Chapter	Threading Taylor's Law Cost Estimation Active and Idle Times Setup Times Organizational Methods for Efficiency	1. link 2. link

							Cost and Time Optimization Economic and Productive Speeds Turning Operations Cylindrical Turning Facing Threading	
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Machining Tolerances Process Capability Dimensional Tolerances Surface Finish Hole Machining Helical Drill Bit Cutting Angles and Power Chatter Problem Centering Issue Center Drill Bit Standard and Special Tools Integral and Insert Tools Drilling Operations Anglo-Saxon Nomenclature Tool Catalog and Special Equipment	<u>link</u>
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Reamers and Countersinks Turning Boring Tapping and Rolling Hand and Machine Tools Milling taxonomy Facing Shouldering, Slots, Pockets, Contours Milling Cutter Taxonomy	link
Homework	minutes	Reflection	Home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Videos	Reamers and Countersinks Turning Boring Tapping and Rolling Hand and Machine Tools Milling taxonomy Facing Shouldering, Slots, Pockets, Contours Milling Cutter Taxonomy	1. link 2. link
Homework	3-5 hours	Reading material	Home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Chapter	Reamers and Countersinks Turning Boring Tapping and Rolling Hand and Machine Tools Milling taxonomy Facing Shouldering, Slots, Pockets, Contours Milling Cutter Taxonomy	1. link 2. link 3. link
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Evolution of Manual Machine Tools Industrial Revolutions Manual Lathe Schematics Mechanical Components Standard Equipment Tracing Operation Drills Universal Milling Machine Components Configurations Operations Main Equipment	<u>link</u>
Homework	minutes	Reflection	Home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Videos	Evolution of Manual Machine Tools Industrial Revolutions Manual Lathe Schematics Mechanical Components	link

Homework	3-5 hours	Reading	Home	ILO1	TA1.1,	Chapter	Standard Equipment Tracing Operation Drills Universal Milling Machine Components Configurations Operations Main Equipment Evolution of Manual	1. <u>link</u>
		material			TA1.2 LA1.1., LA1.2		Machine Tools Industrial Revolutions Manual Lathe Schematics Mechanical Components Standard Equipment Tracing Operation Drills Universal Milling Machine Components Configurations Operations Main Equipment	2. link 3. link 4. link 5. link 6. link
Class	2 hours	Lecture, Discussion	Presence and Virtual	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Video lecture	Cycle Definition Drawing Preliminary Analysis Surface Definition Manufacturing Process Selection Phases and Subphases Breakdown Alternative Cycle Analysis Process Planning Surface Analysis Preliminary Drawing Evaluation Phase Division	link
Class	2 hours	Lecture, Discussion	Presence and Virtual	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Video lecture	Operation Sequence Selection Economic, Dimensional, and Technological Priority Criteria Tool Selection in Turning Cutting Parameter Selection	link
Class	2 hours	Lecture, Discussion	Presence and Virtual	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Video lecture	Operation Sequence Selection Economic, Dimensional, and Technological Priority Criteria Tool Selection in Turning Cutting Parameter Selection	link
Homework	minutes	Reflection	Home	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Videos	Operation Sequence Selection Economic, Dimensional, and Technological Priority Criteria Tool Selection in Turning Cutting Parameter Selection	link
	2-5 hours	Reading material	Home	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Chapter	Operation Sequence Selection Economic, Dimensional, and Technological Priority Criteria Tool Selection in Turning Cutting Parameter Selection	link
Homework	2-5 hours	Create a new report, group work	Home	ILO1	TA1.3, TA1.4	Peer work	Operation Sequence Selection	link

					LA1.3., LA1.4		Economic, Dimensional, and Technological Priority Criteria Tool Selection in Turning Cutting Parameter	
Class	2 hours	Lecture	Presence and Virtual	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Video lecture	Selection Milling Force and Power Estimation Interrupted Cutting Ball Screw Threads Equipment Comparison Boring Head vs. Reamer vs. Boring Machine Straight-line Machining Broaching Grinding Machine	link
Homework	minutes	Reflection	Home	ILO1	TA1.1, TA1.2 LA1.1, LA1.2	Videos	Configuration Milling Force and Power Estimation Interrupted Cutting Ball Screw Threads Equipment Comparison Boring Head vs. Reamer vs. Boring Machine Straight-line Machining Broaching Grinding Machine Configuration	1. link 2. link 3. link 4. link
Homework	3-5 hours	Reading material	Home	ILO1	TA1.1, TA1.2 LA1.1., LA1.2	Chapter	Milling Force and Power Estimation Interrupted Cutting Ball Screw Threads Equipment Comparison Boring Head vs. Reamer vs. Boring Machine Straight-line Machining Broaching Grinding Machine Configuration	1. link 2. link
Visit	2 hours	Laboratory	Lab	ILO1	TA1.3, TA1.4 LA1.3., LA1.4	Video lecture	Laboratory Machine Functionality Description Practical Demonstrations Bar Cutting Operations Turning Milling Gear Wheel Production Grinding Drilling	link
Class	2 hours	Lecture	Presence and Virtual	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Video lecture	Blind Risers Influence Radius Sizing and Attachment Collar End Effect and Chillers Directional Solidification Jet Checks Heuvers Circles Caine Diagram Parting Plane Overshoots Draft Angles Fillet Radii Casting Design Pattern Modifications	link
Homework	3-5 hours	Reading material	Home	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Chapter	Blind Risers Influence Radius Sizing and Attachment Collar End Effect and Chillers	1. <u>link</u> 2. <u>link</u> 3. <u>link</u>

							Jet Checks Heuvers Circles Caine Diagram Parting Plane Overshoots Draft Angles Fillet Radii Casting Design Pattern Modifications	
Class	2 hours	Lecture	Presence and Virtual	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Video lecture	Synthetic Sand Molding Pit Molding Chemical Bonding Molding Thermal Bonding Molding Shell Molding Investment Casting Die Casting Hot Chamber Machine Cold Chamber Machine Gravity Die Casting Foundry Process Comparison Foundry Defects Residual Stresses Design Changes Management	link
Homework	minutes	Reflection	Home	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Videos	Synthetic Sand Molding Pit Molding Chemical Bonding Molding Chemical Bonding Molding Shell Molding Investment Casting Die Casting Hot Chamber Machine Cold Chamber Machine Gravity Die Casting Foundry Process Comparison Foundry Defects Residual Stresses Design Changes Management	1.link 2. link 3. link 4. link 5. link 6. link
Class	2 hours	Lecture	Presence and Virtual	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Video lecture	Crystal Structure of Metals Crystal Defects Dislocation Deformation and Motion Grain Size and Orientation Material (An)isotropy Recrystallization Temperature Effect on Strength, Hardness, Ductility, and Residual Stresses Stress-Strain Curve in Elastic and Plastic Range Engineering and True Stress/Strain	<u>link</u>
Homework	3-5 hours	Reading material	Home	ILO2	TA2.1, TA2.2 LA2.1., LA2.2	Chapter	Crystal Structure of Metals Crystal Defects Dislocation Deformation and Motion Grain Size and Orientation Material (An)isotropy Recrystallization Temperature Effect on Strength, Hardness, Ductility, and Residual Stresses Stress-Strain Curve in Elastic and Plastic Range Engineering and True Stress/Strain	1. <u>link</u> 2. <u>link</u>

Class	2 hours	Lecture, Discussion,	Presence and Virtual	ILO2	TA2.3, TA2.4	3d models,	Synthetic Sand Molding Pit Molding	link
		Laboratory			LA2.3., LA2.4	video lecture	Chemical Bonding Molding Thermal Bonding Molding Shell Molding Investment Casting Die Casting Hot Chamber Machine Cold Chamber Machine Gravity Die Casting Foundry Process Comparison Foundry Defects Residual Stresses Design Changes Management	
Homework	2-5 hours	Create a new report, group work	Home	ILO2	TA2.3, TA2.4 LA2.3., LA2.4	Peer work	Operation Sequence Selection Economic, Dimensional, and Technological Priority Criteria Tool Selection in molding and solidification	<u>link</u>
							Selection of casting process Simulation using FEM	
Class	2 hours	Lecture	Presence and Virtual	ILO3	TA3.1, TA3.2 LA3.1., LA3.2	Video lecture	Plastic Deformation Extrusion Pressure Estimation Slab Analysis Method Upper Bound Method CAE/FEM and Simulation Types of Semi-Finished Products Types of Rolling Mills Rolling Process Beam Deflection Estimation Grain Effects Residual Stresses Defects Friction Entry and Drag Conditions Torque and Power calibration	link
Homework	3-5 hours	Lecture	Home	ILO3	TA3.1, TA3.2 LA3.1., LA3.2	Chapter	Plastic Deformation Extrusion Pressure Estimation Slab Analysis Method Upper Bound Method CAE/FEM and Simulation Types of Semi-Finished Products Types of Rolling Mills Rolling Process Beam Deflection Estimation Grain Effects Residual Stresses Defects Friction Entry and Drag Conditions Torque and Power calibration	link
Homework	minutes	Reflection	Home	ILO3	TA3.1, TA3.2 LA3.1., LA3.2	Videos	Mannessman Method Pellegrino Pass Method Tube Forming Defects in Rolled Materials Sphere Production Rolling Extrusion Die Angle Selection	1.link 2. link 3. link 4. link 5. link

							Forging Molding	
Class	2 hours	Lecture	Presence and Virtual	ILO3	TA3.1, TA3.2 LA3.1., LA3.2	Video lecture	Mannessman Method Pellegrino Pass Method Tube Forming Defects in Rolled Materials Sphere Production Rolling Extrusion Die Angle Selection Forging	link
							Molding	
Class	2 hours	Lecture, Discussion, Problem- solving task	Presence and Virtual	ILO3	TA3.1, TA3.2 LA3.1., LA3.2 LA3.3	Video lecture	Stamping Sheet Metal Processing Bending Deep Drawing Sheet Metal Characterization	link
Homework	minutes	Reflection	Home	ILO3	TA3.1, TA3.2 LA3.1., LA3.2	Videos	Stamping Sheet Metal Processing Bending Deep Drawing Sheet Metal	1. <u>link</u> 2. <u>link</u> 3. <u>link</u>
							Characterization	
Class	2 hours	Lecture	Presence and Virtual	ILO4	TA4.1, TA4.2	Video lecture	Tolerances Macrogeometric Errors Instrument Calibration Certification	<u>link</u>
Homework	2-5 hours	Create a	Home	ILO4	TA4.1,	Peer	Statistical Process Control Measurement Tools Microgeometric Measurements Form Errors Surface Texture Roughness Measurement Roughness Tester Profile Sampling Filtering Roughness Parameters Coordinate Measuring Machine (CMM) Operation Sequence	link
Homework	2-5 110013	new report, group work	riome	1204	TA4.2 LA4.2., LA4.3	work	Selection Economic, Dimensional, and Technological Priority Criteria Inspection process selection Inspection tool	iiiik
Homework	minutes	Reflection	Home	ILO4	TA4.1, TA4.2 LA4.1., LA4.2	Videos	Tolerances Macrogeometric Errors Instrument Calibration Certification Statistical Process Control Measurement Tools Microgeometric Measurements Form Errors Surface Texture Roughness Measurement Roughness Tester Profile Sampling Filtering Roughness Parameters Coordinate Measuring Machine (CMM) Operation Sequence Selection Economic, Dimensional, and Technological Priority	link

							Inspection process selection Inspection tool	
Class	2 hours	Lecture, Discussion	Presence and Virtual	ILO5	TA5.1, TA5.2 LA5.1., LA5.2, LA5.3	Video lecture	Welding Process Taxonomy Oxyacetylene Welding and Cutting Electric Arc Welding Resistance Welding Soldering Brazing Friction Stir Welding Design for Welding Energy Density Heat Treatments Heat Affected Zone (HAZ) Distortions Residual Stresses Riveting Clinching Crimping Adhesive Bonding	link
Homework	minutes	Reflection	Home	ILO5	TA5.1, TA5.2 LA5.1., LA5.2	Videos	Welding Process Taxonomy Oxyacetylene Welding and Cutting Electric Arc Welding Resistance Welding Soldering Brazing Friction Stir Welding Design for Welding Energy Density Heat Treatments Heat Affected Zone (HAZ) Distortions Residual Stresses Riveting Clinching Crimping Adhesive Bonding	1.link 2. link

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)
Remember	arrange, define, list, identify	Lecture, Reading materials
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-share, Fishbowl, Laboratory
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Material: https://drive.google.com/drive/folders/0Bys-IU Yv0e RWIRd1BzTmRoZ0k?resourcekey=0-WKX zipVKBurMEnu6ynEVg&usp=sharing

Table 4: TAs for the Course: Manufacturing processes, Partner: Unipi

ILO reference (Highlight the Verb)	Assessment task 1	Assessment task 2	Assessment task n
ILO 1 Evaluate advanced	Level : Level_5	Level : Level_5	Level : Level_5
machining processes and their quality, productivity, and costs in manufacturing	Type***: Exam question Short description: Answer	Type***: Group work Short description: Present	Type***: Oral examination
environments and operations	questions regarding the presented manufacturing applications discussing on the experience had during the lab session and discussed during classes. Solve simple exercises.	the group project report of the manufacturing process of a given mechanical product and Answer questions regarding the choice of machining processes in the project	Short description: Answer to theoretical question on machining technologies and material properties. Explain Main differences, pros and cons using comparison methods
ILO2 Design and optimize casting	Level: Level_3	Level : Level_6	Level: Level_5
processes considering model and core design, gating system, cooling	Type***: Case study (Exam question)	Type***: Group work Short description: Present	Type***: Discussion (Oral examination)
modules, and material properties. Evaluate economic feasibility, identify and rectify common foundry defects, and apply Design for Manufacturing principles.	Short description: Answer questions regarding casting process on the experience had during the lab session. Solve simple exercises.	the group project report of the manufacturing process of a given mechanical product and Answer questions regarding the choice of casting processes in the project	Short description: Answer to theoretical question on casting technologies. Explain Main differences, pros and cons using comparison methods
ILO3 Evaluate metal forming	Level: Level_3	Level: Level_3	
processes through extrusion and rolling techniques, applying	Type***: Case study (Exam question)	Type***: Discussion (Oral examination)	
principles of deformation and friction analysis, and selecting appropriate equipment for operations	Short description: Answer questions regarding the metal forming process. Solve simple exercises.	Short description: Answer to theoretical question on metal forming processes.	

2.5. PRz

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- **Short description**: ILOs has in general from 150 to 250 characters.
- **Bloom Verb Level**: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses
- **Context** where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Data analysis, Partner: PRz

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO1	describe modern information	Level_2	Modern information	decision support
	technologies, such as OLAP,		technologies	processes
	data warehouses, data mining			
	methods , artificial		(OLAP, data warehouse,	
	intelligence methods		data mining, artificial	
			intelligence, manage-	
			ment desktop)	
ILO2	Implement an example	Level_3	management desktop	Data visualization
	management desktop			
			(management desktop,	
			data visualization, Excel,	
			pivot tables)	

¹ For more info refer to: https://doi.org/10.3390/educsci12070438.

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO
- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Data analysis, Partner: PRz

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
ILO1 describe modern information technologies, such as OLAP, data warehouses, data mining methods , artificial intelligence methods	TA 1.1 Present modern information technologies, such as OLAP, data warehouses, data mining methods , artificial intelligence methods TA 1.2 Demonstrate the use of data mining methods to discover knowledge from data	LA 1.1 Listen to the presentation, take notes, and ask questions. LA 1.2 Apply selected data mining methods	Encourages contact between students and faculty, LA 1.1 LA1.2 Encourages active learning LA 2.2 Gives prompt feedback, LA 2.2
ILO 2 Implement an example management desktop	Present the possibilities and role of management desktops in a decision support processes TA 2.2 Demonstrate the use of Excel to visualize data and to design a management desktop	LA 2.1 Listen to the presentation, take notes, and ask questions. LA 2.2 Implement an example management dashboard	Encourages contact between students and faculty, LA 1.1 Encourages active learning LA 2.2

- encourages contact between students and faculty,
 develops reciprocity and cooperation among students,
- encourages active learning,
- gives prompt feedback,
- emphasizes time on task,
- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

² 7 principles of good learning:

Table 2.2: TAs for the Course: Data analysis, Partner: PRz

Course moment ³	Weekday, date and time slot ⁴	LA Type⁵	Location ⁶	ILO Code	TLA Code ⁷	Course material ⁸	Keywords	Link to the material
Class	2	Lecture		ILO1	TA 1.1	slides	OLAP technologies Data mining Multidimensional data analysis	Errore. L'origine riferimento non è stata trovata
Class	2	Workshop		ILO2	TA 2.1	slides	management desktop, data visualization, Excel, pivot tables	Errore. L'origine riferimento non è stata trovata
					TA 2.2	slides, data files, Spreadsheet software	management desktop, data visualization, Excel, pivot tables	Errore. L'origine riferimento non è stata trovata Errore. L'origine riferimento non è stata trovata
Homework	4	Problem- solving tasks		ILO1 ILO2	TA 1.2 TA 2.2	-	Data mining management dashboard	

Links to course materials:

- 1. <u>data analysis lecture.pptx</u>
- 2. <u>dashboard introduction.pptx</u>
- 3. Files required to complete the dashboard workshop:
 - a. <u>dashboard template.xlsx</u>
 - b. <u>customers.xlsx</u>
 - c. <u>continents.xlsx</u>
 - d. <u>orders.xlsx</u>
 - e. products.xlsx
- 4. Dashboard workshop results: dashboard result of the classes.xlsx

³ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 $^{^{4}\,\}mathrm{lt}$ helps understanding relative positioning and duration of different course moments.

⁵ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.

⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)
Remember	arrange, define, list, identify	Lecture, Reading materials
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-share, Fishbowl, Laboratory
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Table 4: TAs for the Course: Data analysis, Partner: PRz

ILO reference (Highlight the Verb)	Assessment task 1	Assessment task 2	Assessment task n
ILO1	Bloom level: Level_2		
describe modern information technologies,	Type***: Exam question		
such as OLAP, data	Short description: Answer		
warehouses, data mining	questions on the OLAP cube		
methods , artificial	creation process.		
intelligence methods			
ILO 2	Bloom level: Level_3	Bloom level: Level_3	Bloom level: Level_3
Implement an example	Type***: Exam question	Type***: Exam	Type***: Exam
management desktop		question	question
	Short description: Demonstrate		
	how to create references	Short description:	Short description:
	between data tables	Demonstrate how to	Demonstrate how to
		create pivot tables and	place data visualization
		visualize data from	components in a given
		these tables	management desktop

Table 5: AT examples

Bloom Taxonomy	EGV	Assessment Task (Examples)
Remember	arrange, define, list, identify	Multiple choice, quiz/test, question banks, take-home examination. Concept/mind maps, interview, debate, problem sheet, minutes,
Comprehension	classify, discuss, present, rewrite	forum posts, open-book, individual presentation, group presentation, viva-voce
Apply	solve, calculate, demonstrate, organize, use	Abstract, case study, problem-solving tasks, roleplay, group work, portfolio, workbook, project
Analyze	categorize, contrast, compare, debate, inspect	Thesis, annotated bibliography, literature review, debates, class discussion, jigsaw method, think-pair-share, fishbowl, laboratory
Evaluate	assess, conclude, justify, measure	Report, reflection, journal, debates, mind map, peer evaluation, group work, teamwork
Create	design, develop, revise, formulate	Project, thesis, article, essay, creative work, demonstration, performance, roleplay, recorded/rendered creative work,

Intended Learning Outcomes (ILOs)

The template for the formulation of the ILO is emphasizing the student perspective. All the ILO are formulated to address directly what is expected from the learner after following the related educational unit. Three are the key elements:

- **Short description**: ILOs has in general from 150 to 250 characters.
- **Bloom Verb Level**: detailing the action expected and referring to the expected level of understanding as expressed in the well-known Bloom taxonomy¹ selecting one of the following level:
 - Level1_Recall facts and basic concepts "Remember": (define, duplicate, list, memorize, repeat, state)
 - Level2_Explain ideas or concepts "Understand": (classify, describe, discuss, explain, identify, locate, recognize)
 - Level3_Use information in new situations "Apply": (execute, implement, solve, use, demonstrate, interpret, operate)
 - Level4_Draw connections among ideas "Analyse": (differentiate, organize, relate, compare, distinguish, examine, test, analyze)
 - Level5_Justify a stand or decision "Evaluate": (appraise, argue, defend, judge, select, support, value, critique, weigh)
 - Level 6_Produce new or original work "Create": (design, assemble, construct, conjecture, formulate, author, investigate)
- **Content** to which the action indicated by the verb refer to and keywords enclosed in parentheses and in italics
- **Context** where the action for the related content must be applied and keywords enclosed in parentheses and in italics

Table 1: ILOs for the Course: Simulation modelling, Partner: PRz

	Short description	Bloom Verb level	Content (keywords)	Context (keywords)
ILO1	explain the concepts related to modelling continuous-time	Level_2	modelling the continuous-time systems	system dynamics method
	systems using the system dynamics method		concepts (modelling, simulation,,	(systems thinking, system dynamics method)
			continuous-time system)	
ILO2	construct a simulation model reflecting the key features	Level_6	simulation model reflecting key features	the system under analysis
	and behaviour of the system under analysis		and behaviours	(system, system archetypes)
			(system, model, modelling, simulation system archetypes)	
ILO3	analyse simulation experiment results for	Level_4	simulation experiment results	continuous-time systems
	continuous-time systems		(simulation experiment)	(continuous-time system)

¹ For more info refer to: https://doi.org/10.3390/educsci12070438.

Teaching and Learning Activities (TLA)

The template for the formulation of the TLA is emphasizing the following dimensions:

- What is the teacher supposed to do to enact the underlying ILO
- What is the learner supposed to do to enact the underlying ILO
- How does the suggested activity relate to good teaching practices as expressed in the 7 principles of good learning²

Table 2.1: TLAs for the Course: Simulation modelling, Partner: PRz

ILO reference (Highlight the Verb that need be aligned)	Teaching Activity (What the teachers do)	Learning Activity (What the students do)	How does this use the 7 Principles of good learning
ILO1 Explain the concepts related to modelling continuous-time systems using the system dynamics method	TA 1.1 Present the system dynamics method. TA1.2 Describe the continuous-time systems modelling.	LA 1.1 Listen to the presentation, take notes, and ask questions. LA 1.2 Listen to the presentation, take notes and ask questions. LA 1.3 Explain the concepts related to modelling continuous-time systems .	Encourages contact between students and faculty, LA 1.1 LA1.2 Gives prompt feedback, LA 1.3
ILO2 Construct a simulation model reflecting the key features and behaviour of the system under analysis	TA2.1 Describe and present the modelling process using system dynamics. TA2.2 Show and explain model formulation for manufacturing and management systems.	LA 2.1 Observe the presentation, take notes, and ask questions. LA 2.2 Implement and discuss appropriate models.	Encourages contact between students and faculty LA 2.1 LA 2.2 Encourages active learning Gives prompt feedback, Develops reciprocity and cooperation among students LA 2.2

² 7 principles of good learning:

- encourages contact between students and faculty,
 develops reciprocity and cooperation among students,
- encourages active learning,
- gives prompt feedback,
- emphasizes time on task,
- communicates high expectations
- respects diverse talents and ways of learning

Arthur W. Chickering and Zelda F. Gamson (1987)

ILO3 Analyse simulation	TA3.1 Show and explain	LA 3.1 Observe the presentation,	Encourages contact between students and faculty'
experiment results	simulation	take notes, and ask	Gives prompt feedback,
for continuous-	experiments and	questions.	LA 3.1
time systems	result analysis for manufacturing and management systems.		LA 3.2
	TA3.2	LA 3.2	Encourages active learning,
	Show and explain	Interpret the results.	Respects diverse talents and ways of
	assumptions of the	Identify decision variables	learning,
	results analysis	and constraints. Suggest	Develops reciprocity and cooperation
		and justify opportunities	among students
		for model improvement.	LA 3.2

Table 2.2: TAs for the Course: Simulation modelling, Partner: PRz

Course	Weekday, date	LA Type ⁵	Location ⁶	ILO	TLA	Course	Keywords	Link to the
moment ³	and time slot ⁴			Code	Code ⁷	material ⁸		material
Class	2 hours	Lecture	Class	ILO1	TA1.1	slides	Introduction	Intro-System
							Systems thinking	dynamics.pptx
							System dynamics	
							method	
							Causal dependencies	
							Feedback loop	
Class	2 hours	Lecture	Class	ILO1	TA1.2	slides	Continuous-time	Modeling-System
							system	dynamics.pptx
							System archetypes	
							Modelling process	
							Mental and structural	
							models	
Class	2 hours	Lecture	Class	ILO2	TA2.1	chapter	Vensim PLE	System dynamics
							presentation	main concepts.pdf
							Model settings	
							Mathematical model	
							notation	
							Stocks and flows	
							Material and	
							information flow	
Class	4 hours	Tutorial	Class	ILO2	TA2.2	Slides,	Manufacturing system	System dynamics in
						chapter	components	manufacturing.pptx
							Production flow	Models of the
							Line balancing	manufacturing
							Flow discretization	<u>system</u>
							Assembly process	components.pdf
							Enterprise in the	
							market environment	
						1	Risk factors	

³ Can be physical meeting or homework or any other kind of activity that need to be done in the course (e.g., visit). It shows the chronological flow of the course.

 $^{^{\}rm 4}$ It helps understanding relative positioning and duration of different course moments.

 $^{^{\}rm 5}$ referring to column 3 of the Table 3 (can be one of the listed examples). For more info refer to https://doi.org/10.3390/educsci12070438.
⁶ Class, home, lab, company

⁷ Follow the code of the previous template Table 2.1 (TA)

⁸ Material supporting each course moment. Can be: 3d models, www page, note, quizz, code, video lecture, book, chapter, task, video, slides, peer work

Class	2 hours	Tutorial	Class	ILO3	TA3.1	Open access article	Setting up simulation parameters, Simulation experiment observation Collecting simulation results Quantitative and qualitative analysis	Problems of System Dynamics model development for complex product manufacturing process.pdf
Class	2 hours	Tutorial	Class	ILO3	TA3.2	Chapter	Simulation results interpretation Identification of decision variables and constraints Model improvement opportunities. Solution selection and implementation Model discusion	SD in manufacturing - case study.pdf
Class/ Homework	15 hours (Throughout the course)	Case study in real-life situation Problem- solving tasks Group work	Virtual Home	ILO1 ILO2 ILO3	TA1.1 TA1.2 TA2.1 TA2.2 TA3.1 TA3.2	-	Create a model of specified system Simulate and discuss result Find improvement opportunities Justify the chosen solution	Project 1.pdf

Table 3: Learning activities examples (column 3)

Bloom Taxonomy	EGV	Learning Activities (Examples)
Remember	arrange, define, list, identify	Lecture, Reading materials
Comprehension	classify, discuss, present, rewrite	Mind map, Think-pair-share, Discussion, Reflection, Fishbowl
Apply	solve, calculate, demonstrate, organize, use	Case study in real-life situation, Problem-solving tasks, Roleplay, Group work, Laboratory Debates, Class discussion, Jigsaw method, Think-pair-share
Analyze	categorize, contrast, compare, debate, inspect	Debates, Class discussion, Jigsaw method, Think-pair-share Fishbowl, Laboratory
Evaluate	assess, conclude, justify, measure	Journal, Debates, Mind map, Peer evaluation
Create	design, develop, revise, formulate	Brainstorm, Design a presentation, Create a new report, Construct a roleplay

Assessment Task

The template for the formulation of the AT is emphasizing different assessment strategies for different verbs and different learning style.

Table 4: ATs for the Course: Simulation modelling, Partner: PRz

ILO reference (Highlight the Verb)	Assessment task 1	Assessment task 2	Assessment task n
Explain the concepts related to modelling continuous-time systems using the system dynamics method	Bloom level: 2 Type***: Exam question Simulation modelling - assesment test.pdf Short description: Answer questions on the modelling concepts and system dynamics method		
ILO2 Construct a simulation model reflecting the key features and behaviour of the system under analysis	Bloom level: 6 Type***: Project Short description: Study the given system description and develop appropriate simulation model.		
ILO3 Analyse simulation experiment results for continuous-time systems	Bloom level: 4 Type***: Project Short description: Perform simulation experiment analyse results, discuss and implement model improvements.		

Lead Partner

Partners

TET: The Evolving Textbook